В. Пикулев, 2014

ФИЗИКА МИКРОЭЛЕКТРОННЫХ ПРИБОРОВ ШІ-V

1.

1.1. История развития и перспективы A³B⁵ микроэлектроники.

1.2. Кристаллическая структура А³В⁵ полупроводников.

Литература

- Adachi S. Physical properties of III-V semiconductor compounds: InP, InAs, GaAs, GaP, InGaAs, and InGaAsP. Wiley, 1992 318 p.
- Oktyabrsky S., Ye P. D. Fundamentals of III-V Semiconductor MOSFETs. –
 Springer, 2010. 445 p.
- Sze S., Ng K. K. Physics of semiconductor devices. Wiley, 2007. 765 p.
- Громов Д. В., Краснюк А. А. Материаловедение для микро- и наноэлектроники. – М.:МИФИ. – 156 с.
- Baca A. G., Ashby C. I. H. Fabrication of GaAs Devices. IET, 2009. 350 p.
- Schubert E. F. Light-emitting diodes. Cambridge University Press, 2006. 422 p.
- Doering R., Nishi Y. Handbook of semiconductor manufacturing technology. CRC Press, 2008. – 1720 p.
- Grundmann M. The Physics of Semiconductors: An Introduction Including Devices and Nanophysics. – Springer, 2006. – 690 p.
- Епифанов Г. И. Физические основы микроэлектроники. М.: Советское Радио, 1971. – 376 с.
- Кейси Х., Паниш М. Лазеры на гетероструктурах. В 2-х томах. М.: Мир, 1981.
 300 с., 365 с.

G	roup 1 Группа																	18
Period	1.00794 1 18 ³	Место							4.002602 2 He 1s' are a									
- bowdall	-259.14 -252.87 2.02/- Hydrogen Bodopod	2 Ila	Атом	ная масса, с	относительн	uan 18	86.207	Atomic mas	s, relative	Group	oups 118 s IAVIII0	IUPAC 1989 IUPAC 1970	13	14 IVa	15 Va	16 Via	17 Vila	-268.93 12.3 eV Неііum Гелий
2	6.941	9.012182	Aro	unu ja uowar	Officerusie	75	Re	Atomic No.	Symbol	fpyn	пы 118 ИІ	ONAK, 1989	10.811	12.011	14.00674	16.9994	18.9984032	20.1797
	3 LI	4 Be	P	аспределен	ие электрон	os [Xe] 4	f145d56s2	Electron co	figuration	Группы І	А VIII0 ИІ	OFIAK, 1970	5 B	6 C	7 N 2s'2p'	8 O	9 F	10 Ne
	180.54 1347	1278 2970	Те	мпература	плавления ("C)	3180	Melting poir	nt (°C)				2210 ~2600	~3550 4827	-209.86 -195.8	-218.4 -182.96	-219.62 -188.11	-248.7
	0.98/0.97	37 1.67/1.47 Температура к			ра кипения (°C)	5627	Boiling poin	t (°C)				2.04/2.01 Boron	2.55/2.50 Carbon	3.04/3.07 Nitrogen	3.44/3.50 Oxygen	3.98/4.10 Fluorine	10.6 eV
	Литий	им ВегуШим Эл гий Бериллий (по Полинг		ингу/по Алл	рицательнос реду и Рохо	sy)	.9/1.46	(Pauling/All	red & Rocho	V)			Bop Borum	Углерод Carboneum	A30T Nitrogenium	Кислород Oxygenlum	Fluorum	Неон
	22.989770	24.3050			Harrist	Rh	enium	Name					26.981538	28.0855	30.973761	32.066	35.4527	39.948
	[Ne]3s ¹ 97.86	38 ² 648.8		Латин	названи ское названи	Ne R	henium	Latin name					3s'3p'	39'3p'	39'3p'	3s'3p'	3s"3p" -100.98	3s'3p*
3	883.15 0.93/1.01	1107					1	a tritter i				2467	2355 1.90/1.74	280 2.19/2.06	444.674 2.58/2.44	-34.6 3.16/2.83	-185.7	
	Sodium Hatpuñ	Magnesium	3	4	5	6	7	8	9	10	11	12	Aluminium [Aluminum]	Silicon Кремний	Phosphorus	Sulphur Cepa	Chlorine Xnop	Argon
	39.0983	40.078	44.955910	47.867	50.9415	51.9961	54.938046	55.845	58.933200	58,6934	63.546	65.39	69.723	72.61	74.92160	78.96	79.904	83.80
	19 K	20Ca	21SC	22 Ti	23 V	24Cr	25 Mn	26Fe	27Co	28 Ni	29Cu	30Zn	31Ga	32Ge	33AS	34Se	35Br	36 Kr
4	63.65 774	839 1487	1541	1670	1890	1857	1244	1535 2750	1495 2870	1453 2732	1083.4	419.88	29.78	937.4	(3,7MPa)	217	-7.25 58.78	-156.6
	0.82/0.91 Potassium	1.00/1.04	1.36/1.20	1.54/1.32	3380	1.66/1.56	1.55/1.60 Manganese	1.83/1.64 Iron	1.88/1.70 Cobalt	1.91/1.75 Nickel	1.901.75 Copper	1.65/1.66 Zinc	2403 1.81/1.82	2830	2.18/220 Arsenic	2.55/2.48	2.96/2.74 Bromine	-152.3 6.8 eV
	(Kalium)	Саlcium Кальций	Scandium Скандий	Титан	Ванадий	Спготит	Марганец Manganum	Железо Ferrum	Cobaltum	Николь Niceolum	Megs Cuprum	Цинк Zincum	Gallium Галлий	Germanium Германий	Мышьяк Arsenicum	Селен	Бром	Кгуртон
	85.4678 37Rb	38 Sr	88.90585 39 Y	91.224 40 Zr	92.90638	95.94 42 Mo	43 Tc	101.07 44 Ru	102.90550 45 Rh	46Pd	107.8682 47AC	48Cd	114.818 49 In	50Sn	121.760 51Sb	127.60 52 Te	126.90447 53	131.29 54 Xe
	(Kr)5s' 38.89	5a* 769	4d'5s'	4d'58"	4d'5s' 2468	4d*5s' 2617	4d"58' 2172	4d'58' 2310	4d"5s' 1966	4d ¹⁰ 1552	4d"5s'	4d ¹⁰ 5s ⁸ 320.9	4d"5s"5p'	4d"5s"5p' 231,88	4d*5s'5p' 630.5	4d"5s'5p' 449.5	4d"5s'5p" 113.5	4d"5s'5p" -111.9
.9	687.2 0.82/0.89	1384 0.95/0.99	3337 1.22/1.11	4377	4742 1.6/1.23	4612 2.16/1.30	4877 1.9/1.36	(-3900) 2.2/1.42	3727 2.2/1.5	3140 2.2/1.4	2212	765 1.7/1.5	2080	2270 1.96/1.7	1750 2.05/1.8	989.8 2.1/ 2.0	184.35 2.66/2.2	-107.1 5.85 eV
	Rubidium Рубидий	Strontium Стронций	Yttrium	Zirconium	Niobium Ниобий	Мојурденит Молибден Мојурдаерит	Technetium	Ruthenium	Rhodium	Palladium	Silver Cepe5po	Cadmium Кадмий	Indium Индий	Tin Onoso Stanouro	Antimony Cypьмa (Stibium)	Tellurium	lodine Иод	Хелол Ксенон
	132.90545	137.327	138.9055	178.46	180.9479	183.84	186.207	190.23	192.217	195.078	196.96655	200.59	204.3833	207.2	208.98038	(210)	(210)	(222)
	55 [Xe]6s'an #		5/ Ld	4f"5d'66"	41"5d"66"	4f"5d"6s"	4f"5d'66"	4f"5d"6a"	41"5d'6s'	18 PL 4f"5d"66"	4f"5d"6s'	41"5d"6s"	4f"5d"6s'6p'	4f"6d"6s'6p'	4f"5d"6s'6p1	4f"5d"6s'6p'	40"6d"6s"6p"	4f"5d"6s26p"
6	678.4 0.79/0.86	725	920 3454	2227 4602	2996 5425	3410 5660 1.7/1.40	3180 5627	3045 5027	2410 4130	1773.5	1064.43 2807	-38.86 356.6	303.5	327.5	271.3	254 962	302 337	-71.0
	Csesium Lisanä	Barium	Lanthanum	Hafnium	Tantalum	(Wolfram) Bonudpam	Rhenium	Osmium	Iridium	Platinum	2.54/1.42 Gold Bonoro	Mercury	Thallium	Lead	Візтит	Polonium	Astatine	Radon
	[Cesium] (223)	(226)	(227)	(261)	(262)	(263)	(264)	(265)	(268)	(269)	Aurom ()	(Hydrargyrum) (277)	()	(Plumbum) (289)	Bismuthum	Попония	Astatium	Радон
	87 Fr	88 Ra	89Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Uun	111 Uuu	112 Uub	113 Unt	114Uuq				
7	27 677	75" 970 1140	1050 (-3250)	51.90.12.	51.00.7s.	01 60 7s	51 60.7s	DI 00.12	of 6d /s	5F 60.7s	5f"6d"7s'	5f"6d"7a*	pi. eg. va.vb.	pt.eq./s./b.				
	0.7/0.86 Francium	0.89/0.97 Radium	1.1/1.0 Actinium	Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Meltnerium	Ununnilium	Unununlum	Ununbium	Ununtrium	Ununquadlum				
* E	Франций lement has no	Радия o stable nuclid	Jes. For	Резерфордна 140,116	Дубний 140.90765	Сиборгия	Борий (145)	Хассия	Меятнерия	Унуниклий 157.25	Унунуния 158.92534	Унунбия 162.50	Унунтрий 164.93032	Унунквадии 167.26	168.93421	173.04	174.967	
rac pa	floactive elem	ents the valuers to the num	e in iber of	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67Ho	68 Er	69 Tm	70Yb	71Lu	
nu sta	cleons (mass ble isotope (l	number) of th UPAC, 1995)	e most	4f ⁴ 6s ² 798	4f'6s' 931	4f'6s' 1021	4f'6s" 1168	4f"6s" 1077	4f'6s" 822	4f'6d'6s' 1312	4f"6s" 1356	41"65" 1409	4f"65" 1474	4f''6s' 1529	4f"6s" 1545	4f*6s* 819	4f"5d'6s" 1663	
 Элемент не имеет устой изотопов. Для него в скоб 			зых х	-1.2/1.1	-1.2/1.1	-1.2/1.1	1.2/1.1	-1.2/1.1	-1.2/1.0	-1.2/1.1	-1.2/1.1	-1.2/1.1	-1.2/1.1	-1.2/1.1	-1.2 /1.1	-1.2 /1.1	-1.2 /1.1	
приведено значение массового числа (число нуклонов в ядре)			oro pe)	Cerium Церий	Praseodymium Празеодим	Neodymlum Неодим	Promethium Прометий	Samarium Самарий	Europium Европий	Gadolinium Гадолиний	Terbium Тербий	Dysprosium Диспрозий	Holmium Гольмий	Erbium Эрбий	Thulium Тулий	Ytterbium Иттербий	Lutetium Лютеций	3
(И	(NOTAK, 1995).			(232)	(231)	92 1	(239)	(239) 94 Put	05 Am	(247) 96 Cm	97 BL	98 (252)	(251)	(257) 100 Em	(258) 101 Md	(259) 102 No	(260)	
ti	[] American spelling of the element's			6d ² 7s ³	5f'6d'7a'	5f'6d'7s'	5f'6d'7s'	5f*7s*	5f'7a'	5f'6d'7s'	5f ⁹ 78 ²	5f"7s"	5f"78"	5f ² 7s ²	5f ³ 7s ¹	56"78"	5f"6d'78"	
()	Альтернатив звание	ное английск	00	(~3800)	4230-4500	3818	3902 1,22/1,2	3340	2607	3110	2630	1227	1.3/-	1.3/1.2	1.2/1.2	1,3/-	1.3/-	
[] Американское написание названия элемента				Thorium	Protactinium	Uranium	Neptunium	Plutonium Плутоний	Americium Америций	Curium Kiopii	Berkellum	Californium Калифорний	Einsteinium	Fermium Фермий	Mendelevium	Nobelium HoGennii	Lawrencium	

Подвижность

	Si	Ge	GaAs	InAs	InSb
Electron mobility ^{1,2} (cm ² / V·sec)	1 600	3 900	9 200	40 000	77 000
Hole mobility ^{1,2} (cm² / V·sec)	450	1 900	400	500	850
Bandgap (eV)	1.12	0.66	1.42	0.36	0.17

	$E_{g}(0)$	α	β
	(eV)	(eV/K)	(K)
GaAs	1.519	5.4×10 ⁻⁴	204
Si	1.169	4.9×10 ⁻⁴	655

$$E_g(T) = E_g(0) - \frac{\alpha T^2}{T + \beta}$$

Подвижность

Область применения

полупр.	вид Е _g , эВ (300К)	область применения и особенности
AlP	н 2.45	Светодиоды (используется в соединениях). Реагирует с водой.
AlAs	н 2.163	Свето- и фотодиоды, лазеры. Реагирует с водой, ядовит.
AlSb	н. 1.58	Солнечные батареи.
GaP	н. 2.261	Светодиоды. Относительно быстрая деградация световой эмиссии при высоких плотностях протекающего тока или повышенной температуре.
GaAs	п. 1.424	СВЧ интегральные схемы и транзисторы, светодиоды, диоды Ганна, фотоприёмники и солнечные элементы, детекторы ядерных излучений, лазерные диоды. Высокая радиационная стойкость, имеются сложности и ограничения в технологии производства приборов.
GaSb	п. 0.726	Свето- и фотодиоды на ИК-диапазон, туннельные диоды, сенсоры газов. Невысокая подвижность носителей.
InP	п. 1.351	СВЧ-транзисторы, диоды Ганна, свето- и фотодиоды на ИК- диапазон. Высокая плотность дислокаций.
InAs	п. 0.36	СВЧ-транзисторы, свето- и фотодиоды на ИК-область.
InSb	п. 0.172	Инфракрасные фотодатчики (в т.ч. военного назначения), тепловизоры, холловские датчики, СВЧ-транзисторы. Приборы требуют глубокого охлаждения.

История развития GaAs и GaN

Практически полезные свойства

Частота, ГГц

f, ГГц	2	10	30	35	60
Мощность, Вт	170	14	3,6	3,5	0,09
Ширина затвора, мм	25-30	1-1,5	1,05	1,05	0,18
Материал подложки	SiC	SiC	SiC	SiC	SiC
Фирма	NEC, Fujitsu	NEC	Cree Lighting	Cree Lighting	Fraunhofer Inst.

Положение уровня Ферми (GaAs)

Доноры: кремний, германий, олово. *Акцептор*: бериллий.

Подвижность в легированном GaAs составляет: 3500 см²/В·с при уровне легирования 10¹⁷ см⁻³, 300 см²/В·с при уровне легирования 10¹⁹ см⁻³.

Структура энергетических зон

Кристаллическая структура

Кристаллическая решётка алмаза (а) и цинковой обманки (б). Электронная конфигурация для III – s²p¹, для V – s²p³ (т.е. в среднем 4 валентных электрона на атом для создания связей)

 $\ln(5s^25p^1) + P(3s^23p^3) \rightarrow \ln(5s^15p^3)^- + P(3s^13p^3)^+$

Структура

а) способ задания
 кристаллографических
 плоскостей

1<u>3</u>d

Срезы по основным кристаллографическим плоскостям. Чёрная точка – In, белая - Р

(111)

d

(100)

Соединения: структура

 $In_{0.5}Ga_{0.5}As$

(b) famatinite

Ga

As

(c) layered tetragonal

 $In_2Ga_2As_4$

Соединения: структура

Соединения: структура

Соединения: ширина запрещённой зоны и период решётки

Ширина запрещённой зоны для представителей группы III-V и их соединений. Постоянные кристаллических решеток AIAs и GaAs достаточно близки.

Соединения: гетеропереходы

Ζ

Формирование потенциальной ямы и слоя двумерного электронного газа в области гетероперехода Al_xGa_{1-x}N / GaN

Соединения: гетеропереходы

Эмиттер - база	∆ <i>Е</i> _с , эВ	∆ <i>Е_v</i> , эВ	∆ <i>Е_g</i> , эВ
Al _{0.3} Ga _{0.7} As - GaAs	0,24	0,13	0,37
In _{0.5} Ga _{0.5} P , GaAs	0,19	0,29	0,48
InP - In _{0,53} Ga _{0,47} As	0,25	0,34	0,59

Антифазные домены

Рост плёнки GaAs на Ge подложке

... и другие дефекты

Изображения со сканирующего атомно-силового микроскопа, иллюстрирующие различную морфологию эпитаксиальных слоёв GaAs, выращенных на Ge подложке.

микроскоп Номарского (ДИК) плотность дефектов ~5 10⁴ cm⁻²

Выводы:

Преимущества	Недостатки
Ga	As
 Высокая подвижность электронов при более широкой, чем у Si и Ge, запрещённой зоне 	1. Низкая теплопроводность
2. Возможность создания <i>соединений</i> для формирования гетеропереходов	2. Низкая механическая прочность
3. Высокая радиационная стойкость	3. Сложность устранения антифазных доменов, высокая плотность дислокаций
Ga	aN
 Высокая подвижность электронов при очень широкой запрещённой зоне 	1. Сложность использования Si подложки (разные параметры решётки и к.т.р.)
 Максимально высокая плотность выходной мощности (в расчёте на габариты устройства в 10-15 раз больше чем у кремниевых) 	2. Нестабильность электрических характеристик устройств (коллапс тока) в связи с высокой плотностью дефектов
 Максимально высокая рабочая температура (в пределе до 600 °C) 	
4. Низкий уровень шумов	

aspire invent achieve

http://www.pulsarnpp.ru/